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Abstract 

A computer program has been developed to study 
the lattice dynamics of molecular crystals in the har- 
monic approximation with the external Born-yon 
KS.rm~n formalism and an atom-atom potential func- 
tion. Dispersion curves are obtained for monoclinic 
phenothiazine together with frequency distribution 
functions and external mode contribution to ther- 
modynamic functions. Lattice dynamical T, L and S 
rigid-body tensors are obtained and individual ther- 
mal tensors are compared with experiment. The dis- 
agreement with respect to experimental results is of 
the same order as the disagreement with a 
Schomaker-Trueblood fit of experimental data. 

Introduction 

Lattice dynamics in molecular crystals has been the 
subject of increasing investigations in the past years, 
and recently has advanced a great deal with the availa- 
bility of neutron inelastic scattering experiments. As 
a result a greater amount of experimental data is at 
our disposal for comparison with theoretical dynami- 
cal model calculations. In conjunction with crystal- 
lography, lattice-dynamical calculations are an 
alternative way to obtain atomic mean-square vibra- 
tion tensors, which are also obtained in the crystal 
structure analysis process. Here very good results 
have been obtained by using a potential function 
model for the crystal of a sum of atom-atom interac- 
tions, especially for aromatic hydrocarbons, where 
atom-atom potential functions, involving C and H 
atoms, are best established. In this paper we perform 
a lattice-dynamical calculation of thermal crystallo- 
graphic parameters of a substance where atoms differ- 
ent from C and H are present, though as a minor part. 

In a previous paper (Estrada, Conde & Mfirquez, 
1983) we applied successfully the atom-atom device 
to the study of the theoretical equilibrium configur- 
ation of phenothiazine crystals by means of crystal 
packing-energy calculations and, as a logical step, we 
have extended the method to the study of the lattice 
dynamics of these crystals. This is not a trivial step 
since lattice dynamics requires more restrictive condi- 

* This work forms part of the doctoral thesis submitted to the 
Universidad de Sevilla. 
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tions than those of merely reproducing the experi- 
mental crystal structure and therefore proper results 
are not guaranteed a priori. 

Method of calculation 

Lattice-dynamics vibrational modes for molecular 
crystals where the rigid-molecule hypothesis is valid 
are obtained in a straightforward way within the 
harmonic approximation, i.e. small molecular dis- 
placements. Here the external Born-von K4rmdn for- 
malism can be applied by considering each molecule 
as a solid with six degrees of freedom: three transla- 
tions and three rotations, arriving at the eigenvalue 
equation (Born & Huang, 1954) 

O(q)U(q) = to2(q)U(q), 

where these modes are plane waves with angular 
frequency o., and wave vector q. The amplitude vector 
U has 6Z components and is complex in general, Z 
is the number of molecules in the unit cell. D(q) is 
the dynamical matrix, with dimensions 6Z x 6Z, and 
whose elements can be written explicitly as 

D~'~(qlkk, ) , ,, = {ms(k)rn~(k ' ) }  -I/2 

X ~ ir so( Ik, l'k') exp { iq[x(l'k') - x( Ik )]}, 
I' 

where k and k' label the different molecules in the 
unit cell, i and i' mean either translational or 
rotational displacements, a and /3 stand for x, y, z 
components referred to the molecular principal axes 
of inertia and m'~(k) is the mass of the molecule k 
or the principal inertia moment Is; x(/k) is the 
position vector of the centre of mass of molecule k 

"' Ilk l'k') represents the tensor in the unit cell I and q ~  , 
of force constants whose components are the second 
derivatives of the potential energy of the crystal with 
respect to the molecular displacements u~(Ik) and 
u~(l 'k ')  of molecules k and k', each referred to its 
own principal axes. 

In order to perform this study we have written a 
Fortran program following the method of Pawley 
(1972), within the harmonic approximation, in which, 
from the crystal structure and using a pairwise poten- 
tial model, force constants are calculated analytically 
as a function of rotational and translational coordi- 
nates. 'Self-terms', i.e. force constants relating two 
displacements belonging to the same molecule, can 
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also be obtained analytically, but a slight modification 
in the formulae is necessary (Chaplot, Sahni & Rao, 
1981) to take into account second-order rotational 
displacements when obtaining atomic displacements, 
so we have maintained its calculation from the invari- 
ance conditions (Venkataraman & Sahni, 1970), 
which are known to give correct results if the crystal 
structure satisfies the equilibrium conditions for the 
chosen pairwise potential function (Neto & Kirin, 
1979). Once the force constants are known the pro- 
gram constructs the dynamical matrix for any desired 
wave vector inside the Brillouin zone, whose 
diagonalization with an extension of the Householder 
procedure to hermitian matrices (Pawley, 1970) gives 
us the vibrational frequencies and the wave ampli- 
tudes or polarization vectors. 

Potential energy functions 

The potential energy of the crystal is assumed to be 
the sum of atomic pair contributions, each pair 
formed with atoms belonging to different molecules. 
A central energy functional form is adopted for every 
pair, in a Buckingham form: V ( r ) = - A / r 6 +  
B exp ( - Cr). Here A, B and C are constants, empiri- 
cally adjustable, and depending on the chemical 
nature of the atoms involved. In order to reduce the 
number of independent parameters, it is customary 
to use combination laws for parameters of mixed 
interactions, such as the geometric-mean law for 
attractive and repulsive terms separately (Mason & 
Rice, 1954). Nevertheless, as pointed out by Mirskaya 
(1973), it is more correct to establish the geometric 
mean law for the whole interaction energy, leading 
to different combination rules. We have maintained 
the geometric law for A; the arithmetic law for C 
and B has been adjusted in order to obtain the arith- 
metic mean for the position of minimum energy. This 
method yields potential curves which are very close 
to those of Mirskaya, with the advantage of allowing 
the use of Williams (197 l) convergence methods for 
lattice sums. 

Application to phenothiazine 

We have centred our attention on the monoclinic 
modification of phenothiazine, space j~roup P21, a -- 
7.82 (3), b=5 .93 (1 ) ,  c=10.70(8)  A, f l=105-99 ° 
(Bell, Blount, Briscoe & Freeman, 1968) and two 
molecules per unit cell. A great variety of potential 
parameters are available in the literature to describe 
the interactions of C and H atoms. We have selected 
set IVa of Williams (1967) which has been used 
successfully for obtaining thermal crystallographic 
parameters in aromatic hydrocarbons (Filippini, 
Gramaccioli, Simonetta & Suffritti, 1973; Gramac- 
cioli & Filippini, 1983). We have also tested Williams 
(1972) parameters and Mirskaya, Kozlova & 

Bereznitskaya (1974) parameters; even though both 
of them predicted an equilibrium configuration as 
close to the experimental one as the first set, calcu- 
lated thermal parameters were slightly worse for the 
Williams (1972) set, and rather worse (some diagonal 
thermal parameters twice their experimental values) 
for the Mirskaya et al. parameters, indicating that 
lattice-dynamics calculations are more critical with 
respect to potential parameters than packing calcula- 
tions. For N and S atoms few sets are available in 
the literature and their transferability to a wide range 
of compounds is not well established. Nevertheless, 
in our case, from 284 intermolecular contacts less 
than 4 ,~, only 21 involve S and N atoms (the shortest 
contact distances are: S.. .N 3.703, S...C 3-491, S.. .H 
3.185, N. . .C 3.767 and N. . .H 3.122,~) and their 
importance is expected to be small. We have selected 
Mirskaya & Nauchitel (197 l, 1972) parameters for S 
and N atoms, which are recommended by Mirsky 
(1978) because they fulfil the necessary requirements 
about intermolecular distances, sublimation heats etc. 
All potential parameters are shown in Table l, where 
we observe that the equilibrium distances are larger 
than the sum of the corresponding van der Waals 
radii, but it is known that atoms in molecular crystals 
are compressed with respect to their free state and it 
is the distance at which the energy is zero (when the 
slope of the curve, i.e. the repulsive force, attains a 
large value) rather than the minimum-energy dist- 
ance, the magnitude of which is approximately equal 
to the sum of the van der Waals radii. 

The C - - H  experimental bond lengths were normal- 
ized to a value of 1-09 ~ ,  and the corresponding 
experimental values were kept constant for angles 
involving hydrogen. Before obtaining frequencies a 
process of energy minimization was considered to be 
necessary for this purpose. The program W M I N  
(Busing, 1972) has been used. A translation of 
molecular mass centre of 0.05,~ and a rotation of 
1.4A starting from the experimental structure is 
sufficient to reach the equilibrium and constitutes a 
first test of the goodness of the potential functions. 
A cut-off energy distance has been used in order to 
save computational time and a value of 6 ,~ has been 
chosen as enough to ensure stability in packing and 
dynamical results. 

The Brillouin zone (BZ) for monoclinic 
phenothiazine (Bradley & Cracknell, 1972) is shown 
in Fig. 1 and the dispersion curves obtained for the 
binary symmetry direction A are shown in Fig. 2. 

E 

Fig. 1. Brillouin zone for monoclinic phenothiazine. 



Table 1. Potent ia lparameters  

V(r) = - A / r  6 + B exp ( - Cr). 

o- is the zero energy distance, r o the minimum energy distance and e,, the minimum energy value. 

A(kJ bond -I •6) B(kJ bond -l)  em (J bond - l )  
I n t e r a c t i o n  ( x 1023) ( x 1023) C(,~k -1 ) o-(/~k) ro(/~k ) ( x 1023) 

C . . -C  22-63 3332.9 3.60 3.45 3.88 - 3 - 7 8  
C . . . H  4.96 349.3 3.67 2.90 3.30 - 1-91 
H. . -H  1.08 105.8 3-74 2-97 3.37 - 0 . 3 5  
N. - -N 10.32 1673.9 3.78 3.19 3-59 - 2 - 7 8  
S.- .S 93-49 9365.6 3.49 3-45 3.88 - 15-14 
C-- .N 15.28 2370-5 3.69 3.32 3-73 - 3 . 1 4  
C. . -S  46.00 5435.5 3-54 3-44 3-88 - 7 . 5 7  
H. . -H  3.35 259.5 3.76 2-80 3.19 - 1-55 
H.--S 10-08 623.2 3.61 2.93 3.34 - 3 . 6 2  
N-- .S 31.06 3914-6 3.63 3.31 3-73 - 6 - 3 7  

Along this direction, and as a result of group theory, 
two representations are allowed and the branches can 
be labelled as S or A, indicating a symmetric or 
antisymmetric character with respect to the rotation 
axis, and at the zone frontier, q = rrb* pairs of S and 
A branches coincide because of the temporal inver- 
sion symmetry, the frequencies being degenerate at 
this point. Of these 12 branches three are acoustic, 
with to = 0 for q = 0. 

Frequency distribution functions car, be obtained 
by performing dense sampling inside the Brillouin 
zone. In our case we have chosen a division of each 
reciprocal basis vector into 24 parts and a frequency 
channel of 1 cm -~ for a histogram representation. 
Sampling has been reduced to the irreducible part of 
the BZ (3456 points) and the total external mode 
contribution, together with the translational and rota- 
tional contributions, are shown in Figs. 3, 3(a) and 
3(b).* An important translational centribution is 
observed at low frequencies due to the acoustic 

* Figs. 3(a) and 3(b) have been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 39549 
(3 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, 
Chester CH 1 2HU, England. 
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Fig. 2. Calculated dispersion curves along the b* direction. 

modes; on the contrary, at high frequencies the most 
important contribution is rotational, although in 
neither case are there purely translational or rota- 
tional modes. The Debye parabolic approximation 
holds for frequencies below 1 THz, where only acous- 
tic modes are present. 

From the frequency distribution it is easy to obtain 
the contribution of the external modes to the different 
thermodynamic functions. From statistical mechanics 
theory, for a harmonic crystal, the Gibbs potential is 
found to be 

G = kBT ~, ~, In { 1 - e x p l -  htoj(q)/ksTI} 
q J 

+ ~  E h to j (q ) /2  + Epack + p V ,  
q J 

where j stands for the different modes (6Z for each 
wave vector q), co is the angular frequency, Epack is 
the packing energy, ks is the Boltzmann constant, T, 
p and V are temperature, pressure and volume, 
respectively. The sum over q can be replaced by 
introducing the factor 6 N Z  g(to),  where g(to) is the 
density of modes normalized to unity. For the vibra- 
tion energy the following expression is obtained: 

Ev~b= . { e x p [ h ~ o j ( q ) / k ~ r ] - l }  ~ - ~ "  h~oj(q)/2, 
q J 

where the second term is the zero-point-motion 
energy. 

f 
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Fig. 3. Total external frequency distribution function. 



A. CRIADO, A. C O N D E  AND R. M/~,RQUEZ 699 

The internal energy U can be obtained as U = 
E v i  b + E p a c k  and the entropy as S = ( U - F ) / T ,  where 
F is the Helmholtz free energy. The Ewald-Ber taut-  
Williams convergence method (Williams, 1971) has 
been utilized to eliminate cut-off effects in lattice sums 
( - A i r  6 long-range term, strictly speaking). Cut-off 
distances of 6 A  in direct space and 0.6A, -~ in 
reciprocal space and a convergence constant of 0.27 
have been assumed, giving a value of 6-17 kJ mol-  
with an estimated relative error of 10 -4 with respect 
to the infinite limit in the lattice sums. The energy 
value obtained with a maximum distance of 6/~ in 
direct space represents 75% of the whole crystal 
energy. According to our calculations thermodynamic 
values at 300 K and 1 atm (1 atm = 0.1013 M Pa) are: 
G=-7.37, Evib=0.86, U = 5 - 3 1 k J m o l  -~ and S =  
6.87 J mol -~ K -~. The term p V  is negligible, so F and 
G values are the same. Results are rather insensitive 
to sampling density and a mesh of six points per axis 
yields identical values, probably due to the average 
character of thermodynamic functions over the Bril- 
louin zone (see also Filippini & Gramaccioli, 1981). 
Unfortunately, we lack vibrational or thermodynamic 
experimental data for comparison with our results. 

Thermal motion 

The thermal vibration parameters are obtained 
experimentally in the crystal structure analysis. 
Tensors T, L and S (Schomaker & Trueblood, 1968) 
are defined to describe the mean rigid motion of 
molecules in the crystal. In terms of lattice dynamics 
they may be obtained with the following expressions 
(Willis & Pryor, 1975): 

T,~ (k) = - '  ' ' N {m,~(k)mt3(k)} - '/2 

x y~ y. [Ej(q)/to](q)] e~(qlkj)e~*(qlkj) 
J q 

L~t3(k) = N - ' { m ~ ( k ) m ~ ( k ) }  -~/2 

r* +Y~ Y, [~(q)/o~](q)] e2(qlkj)e~ (qlkj) 
J q 

S,~t~(k) = N - l { m ~ ( k ) m ~ ( k ) }  -1/2 

×~.,~,[Ej(q)/to](q)] , • r* • e~(qlkj)e~ (qlkj), 
J q 

where N represents the number of unit cells in the 
crystal, i.e. the number of allowed q vectors inside 
the Brillouin zone when boundary cyclic conditions 
are adopted, Ej(q) the energy of the mode (q j )  (kBT, 
in the high-temperature limit), e'(qlkj) and er(qlkj) 
represent the translational and rotational components 
relative to molecule k of the polarization vectors 
normalized to unity. 

If the crystal has a finite size, the sums over the 
wave vectors inside the BZ can be expressed as 
integrals; their values may be obtained by dividing 
the BZ into volume elements and by approximating 

Table 2. Rigid-body movement  tensors expressed in the 
principal inertia axes o f  the molecule (a) Lattice 

dynamics; ( b ) Schomaker-  Trueblood fi t  

T in 10 -4/~2, L in 10 -4  rad 2, S in 10 -4  rad A. 

(a) (b) 
295 - 3 0  10 398 -13  26 

T 370 4 322 - 2 3  
390 325 

25 4 - 2  46 - 3 0  30 
L 18 1 33 - 1 9  

73 49 
2 2 - 5  ( -14 )  6 4 

s -8 -l 5 1 (-l) -3 
- 3  -13  - 6  12 -13  (15) 

the integral over an element by the value of the 
integrand in its centre multiplied by its volume. 
Nevertheless, this method implies that the variation 
of the function through the field should be smooth. 
Actually, the frequencies of acoustic modes tend to 
zero for q-> 0, and the integrand becomes divergent, 
though the integral remains finite because the number 
of these modes also tends to zero when q-->0. To 
overcome this problem two methods have been pro- 
posed: the first one (Filippini, Gramaccioli,  
Simonetta & Suffritti, 1976) uses non-uniform samp- 
ling with a greater density near the origin; and the 
second one an even sampling with an analytical evalu- 
ation of the integral over the element centred on the 
origin (Kroon & Vos, 1978). We have chosen the 
second method in which the origin element is surroun- 
ded by 26 volume elements, forming a large 
macrocube. These elements can be classified into 
three types: (a) centred on the faces of the 
macrocube; (b) centred on the edges; (c) centred on 
the vertices. If a linear behaviour of the acoustic 
branches through the macrocube is supposed, it is 
possible to obtain the contribution of the origin ele- 
ment from the contributions of the 26 elements, 
approximating the q -> 0 element by a sphere inscribed 
in it. We have found this contribution to be 

I (q  = 0 )=0 .222  Y, I ( a )  +0.521Y', I (b )  +0.770 ~ I (c) ,  
a b c 

where the sums go through the elements of each type. 
However, these approximations introduce an error 
which can be corrected with an empirical factor r/ 
(Kroon & Vos, 1978) that multiplies the contribution 
of the q--> 0 element. This factor may be found by 
performing a numerical integration of the q-2 func- 
tion in a sphere; we have seen that for samplings 
above 13 divisions per diameter 77 = 1.38. 

In this way we have proceeded to the calculation 
of the tensors T, L and S of rigid-body movement. 
Crystal symmetry has been taken into account to 
reduce the computation time using the information 
contained in all the molecules in the unit cell. A binary 
axis together with time-reversal symmetry reduces the 
sampling zone to ~ of the Brillouin zone: b* and a* 
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positive sense and c* complete. Nevertheless, because 
of the uneven number of divisions in each axis 
(including the q ~ 0  element), multiplicity of the 
different reciprocal planes and lines must be taken 
into account. 

In Fig. 4 we present the convergence of the prin- 
cipal components of T and L calculated at 300 K, 
where 2n +1 is the number of divisions of each 
reciprocal vector. Convergence is achieved very soon 
(n---6) and is poorer for the T tensor because the 
modes with q ~ 0, which are critical for convergence, 
are practically translational. In Table 2 we present 
the tensors T, L and S obtained at 300 K with 27 
divisions per basic reciprocal vector and referred to 
the principal inertia axes of the molecule. 

Table 3. 

T = exp 

C(I) 

C(2) 

c(3) 

C(4) 

Discussion c(5) 

Once the rigid-body tensors are known, we may 
obtain easily the individual adimensional thermal c(6) 
parameters flo (Willis & Pryor, 1975), which can be 
compared with the experimental ones. We have calcu- c(7) 
lated an agreement factor, defined as usual by 

R = E  E [ /3u(exp) - /30(ca l ) l /E  Y~ 1/30(exp)[. 
C(8) 

i j ~ i  / i  j>'i  

In our case R = 0.14, a value which is similar to those c(9) 
encountered in lattice dynamical calculations of ther- 
mal parameters in aromatic hydrocarbons (Filippini, c(10) 
Gramaccioli, Simonetta & Suffritti, 1973; Gramac- 
cioli, Filippini & Simonetta, 1982, Gramaccioli & C(ll) 
Filippini, 1983) and also some heterocylces (Filippini, 
Gramaccioli & Simonetta, 1981). We have also calcu- c(12) 
lated a value 

Af l=~  ~ [flo(exp)-flu(cal)]/Y~ Y, flij(exp) 
i j:>i / i "  j > i  

whose value, equal to - 2 .  l, indicates an overall over- 
valuation of calculated with respect to experimental 
factors, which may be due to thermal diffuse scatter- 
ing effects. Nevertheless, experimental thermal 

Lll 

L22 

~zXz ~ o d  

s (a) 
(b) 
(c) 

N 

3.4 

T22 

Tll 

n::13 6 5 4 3 2 1In n=13 6 5 & 3 Z 1In 

Fig. 4. Convergence of  T and L rigid-body tensors. 

Thermal crystallographic parameters ( × 104) 

-- {h2flll + k2f122 +/2fl33 +2hkfll2 +2hl/313 +2klf123}. 

#l, #22 #33 ~,2 #~3 #23 
168 (2) 240(4) 87 (!) -64 (3) 15 (I) 38 (1) 
148 289 82 -38 37 8 
156 265 88 -34 25 32 
192 (8) 217 (15) 10(4) -16(8) 15 (5) 9 (6) 
162 211 86 1 36 -1 
175 192 83 -4  39 8 
154(8) 239 (18) 92 (5) 18 (9) 30 (5) -9  (7) 
149 348 81 - !1  17 -12 
159 297 84 8 14 -6  
172 (10) 422 (23) 78 (5) 49 (13) 28 (6) -4(9)  
164 442 78 28 14 2 
159 396 75 51 22 0 
190(10) 424 (23) 85 (5) 66(13) 53 (6) 75 (9) 
186 425 83 50 26 45 
174 414 78 53 39 45 
164(8) 281 (19) 106 (5) 18 (12) 43 (5) 61 (10) 
186 312 91 28 34 44 
185 312 87 17 42 51 
154(8) 259 (16) 91 (5) -30(10) 38 (5) -17 (3) 
159 310 85 -41 25 -17 
165 290 82 -40 30 -10 
147(9) 394(23) 77 (5) -12(11) 17 (5) -15(9)  
158 401 77 -16 18 -14 
153 362 73 -9  27 -14 
173 (9) 331 (19) 84(5) 27 (15) 32 (5) 12(11) 
180 374 71 26 21 11 
168 329 73 32 25 il 
183 (89) 224(17) 72 (4) 0(10) 38 (5) 10(7) 
183 284 73 8 30 18 
179 255 81 l0 23 27 
132 (7) 215 (13) 70(4) 0 (9) 31 (5) -4(7)  
138 233 67 - l  36 0 
142 207 71 5 34 9 
144(8) 214(14) 75 (4) 6 (9) 33 (5) -5  (7) 
136 228 72 -7  35 -10 
144 206 71 -4  38 - 4  
136(8) 227 (16) 85 (5) 23 (10) 28 (5) 12 (7) 
139 238 77 20 36 10 
148 216 74 18 41 16 
135 (8) 228 (15) 82 (5) 33 (9) 28 (5) 6 (9) 
124 261 73 3 31 -3  
135 223 74 12 31 5 

(a) Experimental thermal parameters. 
(b) Lattice dynamical thermal parameters. 
(c) Thermal parameters obtained by rigid-body least-squares adjustment 

of the experimental ones. 

parameters are subject to a considerable error because 
of the random deviations of measured intensities, 
which are transmitted in the least-squares structure- 
refinement process, and also due to the thermal diffuse 
scattering contribution, which introduces a systematic 
error. Simultaneously, even in the case of reasonably 
rigid molecules, there always exists a small non- 
rigidity, and the least-squares-fitted tensors T, L and 
S, which best reproduce experimental individual 
parameters, include non-rigid effects in some way. 
Anharmonicity also introduces changes which cannot 
be predicted in the lattice dynamical model we have 
adopted. 

Because of these reasons we think that it is not 
significant to obtain an R agreement factor between 
calculated lattice dynamical and experimental ther- 
mal parameters lower than the one found between 
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experimental thermal parameters and those calcu- 
lated from a least-squares fit of individual experi- 
mental parameters to a rigid model. To perform this 
analysis we have carried out a Schomaker-Trueblood 
fit over individual experimental parameters and the 
resulting T, L and S are shown in Table 2. We have 
recalculated from them the individual parameters, 
whose comparison with the experimental ones gives 
us an idea of their deviation from rigid-body 
behaviour. The agreement factor found is R -- 0.116, 
only slightly lower than the lattice dynamical result, 
so the lattice dynamical calculations are encouraging 
in view of the simplified hypothesis that we have 
adopted in our dynamical model. 

In Table 3 experimental thermal parameters can 
be seen, together with lattice dynamical and 
Schomaker-Trueblood fit results. 

The present work is part of a research programme 
supported by the Government through the Comisi6n 
Asesora de Investigaci6n Cientffica y Trcnica. 
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Abstract 

Strengthened translation functions have been defined 
[Doesburg & Beurskens (1983). Acta Cryst. A39, 368- 
376] as convolutions of two electron density func- 
tions: i.e. the electron density representing the known 
fragment and the electron density obtained by the 
application of the DIRDIF procedures [Beurskens 
et al. (1982). In Conformation in Biology, edited by 
R. Srinivasan & R. H. Sarma. New York: Adenine 
Press]. Similar translation functions are defined as 
convolutions of the DIRDIF Fourier map with itself. 

0108-7673/84/060701-03501.50 

The new functions are less powerful. The combination 
of the two types of functions, however, results in a 
more reliable method for the positioning of a frag- 
ment, if the fragment constitutes at least 10% of the 
total scattering power of the primitive unit cell. 
Examples of applications to known structures are 
given. 

Introduction 

The position of a correctly oriented fragment, rep- 
resented by the electron-density function pp, can be 
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